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We combine experiments, large-scale simulations, and continuum models to study the
emergence of coherent structures in a suspension of magnetically driven microrollers
sedimented near a floor. Collective hydrodynamic effects are predominant in this system,
leading to strong density-velocity coupling. We characterize a uniform suspension and
show that density waves propagate freely in all directions in a dispersive fashion. When
sharp density gradients are introduced in the suspension, we observe the formation of a
shock. Unlike Burgers’ shocklike structures observed in other active and driven confined
hydrodynamic systems, the shock front in our system has a well-defined finite width and
moves rapidly compared to the mean suspension velocity. We introduce a continuum model
demonstrating that the finite width of the front is due to far-field nonlocal hydrodynamic
interactions and governed by a geometric parameter, the average particle height above the
floor.

DOLI: 10.1103/PhysRevFluids.2.092301

Large-scale structures can emerge naturally from the dynamics of driven and active systems
[1]. These structures result from the collective, coherent motion of many individual units, and
although similar phenomena are seen in widely disparate systems [2—4], the interactions that result
in collective and coherent motion strongly depend on the specifics of the system being considered.
Colloidal suspensions, for example, are always in the Stokes (overdamped) limit due to their small
scale. In this limit, the interactions between the colloidal particles are long ranged and strongly
depend on the presence of nearby boundaries. Despite the linearity of the equations for the fluid
flow in the Stokes regime, elucidating the precise role of hydrodynamic interactions in confined or
bounded systems is still an open and challenging problem.

Under strong in-plane confinement, i.e., in a Hele-Shaw cell, active suspensions exhibit coherent
motion at large scales and phase transitions to polar and ordered states. For example, recent
experiments [5] and models [6-11] have shown that hydrodynamic and steric interactions lead
to the emergence of collective motion and structure formation in the form of swirls and vortices
[7,9], asters [7,9], or polarized density waves [6,7,12,13]. In addition to using motile particles, a
background flow can also be used to drive a suspension, leading to a rich and diverse array of
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FIG. 1. (a) Schematic of a single microroller rotated by a magnetic field B. (b) Scanning electron microscope
(SEM) image of the microrollers. (c) Flow field in the plane parallel to the floor induced by a rotlet rotating
about the y axis. (d) Flow field induced by a potential dipole directed along the x axis. The red circles represent
the particle center.

structure formation: long-ranged orientational correlations [14], density fluctuations at all scales
[15], and the formation of Burgers-like shocks [7,12,16,17]. In all of these strongly confined driven
suspensions, despite the difference in propulsion mechanism and driving, the local flow field around
a particle is always quasi-two-dimensional (Q2D) and can be modeled as a potential dipole [6,18,19].
Here, we show that related but quite different structure formation can emerge from a fundamentally
different system, with a different particle-induced flow field and a different type of confinement.
This contrasts with the prediction [15] that only dipolar hydrodynamic perturbations can generate
such dynamics.

In this Rapid Communication, we investigate the dynamics of microrollers, colloidal particles
rotating near a floor. We have previously shown that coherent structures emerge naturally in this
system: The microrollers organize into a shock front which then becomes unstable and emits stable
motile structures of a well-defined size, called “critters” [20]. Here, we study in detail the formation
of the initial shock front, and density fluctuations to explore how they could lead to the cascade
of instabilities observed in this system. In contrast to previously studied Burgers-like shocks, the
shock front we observe in this system has a finite width and propagates much more quickly than
the suspension. Using a combined approach of continuum modeling, experiments, and large-scale,
three-dimensional (3D) numerical simulations, we demonstrate that the origin of this kind of shock
is rooted in the nonlocal hydrodynamic interactions that result from rotational driving near a floor.

Our system consists of magnetically driven colloidal microrollers [see Figs. 1(a) and 1(b)]. These
microrollers are suspended in a sealed chamber of depth H = 200 um, width W = 2 mm, length
L = 50 mm, and are much denser than the surrounding quiescent fluid. As a result, they readily
sediment, and remain near the chamber floor [see the inset in Fig. 1(a)]. They do not rest on the
floor, but are suspended by thermal motion at their gravitational height /, which is set by the balance
of thermal energy and their buoyant mass 7 = a + kgT /mg, where a = 0.656 um is the colloid
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radius, kp the Boltzmann constant, 7 &~ 298 K the fluid temperature, m = 1.27 x 10713 kg their
buoyant mass, and g the gravitational acceleration. The gravitational height 4 of our microrollers
is 1 um, which we verified by measuring their translational diffusion constant and comparing with
the calculated value. In our system, % is two orders of magnitude smaller than the chamber height
H and we only consider particles in a small region (430 x 430 pm) in the middle of the chamber,
quite far from any lateral wall. Thus, this closed system is well approximated by a system with only
one boundary (the floor), i.e., an infinite half space.

The magnetic microrollers in the experiments are polymer colloids (3-methacryloxypropyl
trimethoxysilane) embedded with a hematite cube and suspended in de-ionized water [21]. Hematite
is a canted antiferromagnet, giving the particles a small permanent moment, j[m| ~ 5 x 107'® Am?,
so that particle motion can be driven by a rotating magnetic field, B = By[cos(2t)X + sin(€2¢)Z].
The field is generated using triaxial coils. Below a critical frequency, 2. = 170 rad/s, all of the
particles rotate synchronously with the applied magnetic field at a rate Q2 [20]. All experiments
were done at frequencies below €2, and at fixed field magnitude, By = 2.9 mT. We emphasize that
although the colloidal particles are magnetic, the dominant interparticle interactions in this system
are hydrodynamic due to the small magnitude of the particle magnetic moment. Magnetic potential
interactions are quite small compared to thermal energy (~0.1 kT) and viscous forces between
particles are quite large compared to magnetic forces (Mason number = 500) [20]. Individual
microrollers in the suspension are strongly coupled to the motion of their neighbors. This is due to
the rapid flows generated by rotating the microrollers close to a nearby floor [22]. The velocity of these
collective flows is much higher than the individual translation velocity of an isolated microroller,
a phenomenon that has been surprisingly overlooked until quite recently [20,23]. It is these rapid
flows that lead to the different types of structures we study here. In a homogeneous suspension of
microrollers, this strong hydrodynamic coupling gives rise to a mean suspension translation velocity
which increases linearly with the number density pg [20]. This is quite different from active systems
of rolling particles, such as the Quincke rollers [24,25], where translational collective effects are
much weaker, i.e., where the mean roller velocity weakly depends on pg (see SI Fig. 1 in Ref. [25]).
In the far field, the flow generated by a microroller (or a Quincke roller) in the plane parallel to the
wall [see Fig. 1(c)] has a faster decay (~1/r3) and a different structure from the dipolar flow field
(~1/r?) observed in other systems of confined, driven suspensions of droplets or microswimmers
[6,15,19] [see Fig. 1(d)]. This change is due to the difference in confinement (Hele-Shaw cell versus
a single boundary [22,26]).

We create a uniform density suspension by first mixing our sample, then loading it into the chamber
and letting the particles sediment to the chamber floor. The initial mixing ensures a uniform density
profile, p(x,y,t = 0) & py, across the chamber. Once the magnetic field is turned on, we observe
transient density fluctuations: small clusters of particles which form and break up continuously [see
Fig. 2(a) and movie 1 in the Supplemental Material (SM) [27]]. From the images, we extract the
density fluctuations, §p(x,y,t) = p(x,y,t) — po [28]. The Fourier transform of these fluctuations
8p(k,0) = 1/21 [ 8p(r,1)e'®T=7"dr is then used to extract the pulsation «'(k), in a manner similar
to that used in Ref. [15], where k = (k, = 27 /A, .k, = 27 /A,). Figure 2(b) shows the dispersion
curve in the frame moving with the mean roller translational velocity (Vy): w(k) = o' (K) — (V, k.
Surprisingly, even though the particle-induced flow field is quite different from the dipolar one
[Figs. 1(c) and 1(d)] observed in suspensions of strongly confined (Q2D) particles [6,15,18,26], the
spectrum we measure is qualitatively similar: w is symmetric about the axis k, = 0 and antisymmetric
about the axis k, = 0. Density fluctuations propagate freely in all directions except for k, = 0 and
their magnitude and direction of propagation change with k, and k,. As shown on Figs. 1(c) and
1(d), the rotlet and dipole flows share axial symmetry about the orientation axis (here, £) and they
are both attractive at the rear and repulsive at the front of the particle, which are the essential features
needed to observe this propagative dynamics.

To better understand this dispersive behavior, we introduce a minimal continuum model. This
model neglects out-of-plane motion in the Z direction. We model the microroller suspension as an
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FIG. 2. (a) Microroller suspension (¢ = 0.09). The magnified inset shows the formation and breakup of
an individual cluster (images 1 s apart). (b) Normalized experimental dispersion curve wh/(V,) obtained for
¢o = 0.25 and Q2 = 62.8 rad/s, where the wave numbers are normalized by / /2. (c) Normalized theoretical
dispersion curve obtained from Eq. (5). (d) Normalized dispersion for k, = 0. Symbols indicate experimental
measurements, and the curve is the theoretical result. Symbol color indicates density, and symbol shape indicates
frequency: B, Q = 31.4 rad/s; e, 2 = 62.8 rad/s; A, Q2 = 125.7 rad/s.

infinite sheet of rotlets (point-torque singularities). We consider a uniform plane of these rotlets with
planar density p(x,y,t), which is fixed at a height z = h. The value of & used in the model is the
gravitational height h = a + kgT/mg = 1 um. A point rotlet located at (x’,y’; k) induces a fluid
velocity v(x,y; h) given by [22]

ve(x,y3h) = Ki(x —x".y — y'sh)

(x —x')?

— h[(x _ x/)z + (y _ y/)z +4h2]5/2’ (1)
vy(x,y3h) = Ky(x —x',y — y’;h)
= Sh x =20 =y o

[((x = x)2 + (v — ¥)* + 4n2]5/2

where § = 67, /(87 n) in m3/s, T, = 8mna’Q is the magnetic constant torque around the y axis
[29], and n = 1073 Pas is the dynamic viscosity of water. The conservation law for the rotlet density
in the sheet is

IpCe,y.t) _3pVy)  9(pVi)
ot dy ax

where V,(x,y) and V,(x,y) are the local velocities due to nonlocal hydrodynamic interactions with
rotlets at other positions, Vi (x,y) = K, * p and V,(x,y) = K, * p. We note that V, and V, are finite
because the kernels K, and K, are not singular.

We linearize Eq. (3) about the uniform density state p(x,y,t) = pg + dp(x,y,t), where 6p <K po,
and get

3

3p _ 9L, x8p] _ dL(Vi)dp + poK. % bp]

- , 4
ar - PT oy ox @)

where (V,) = po fj’;o fj;o K, (x,y;h)dxdy = po%® is the theoretical mean roller velocity. We
then seek plane-wave solutions, §p = Zk 8 ke’ kx=01) f the linearized equation (4) and extract the
pulsation in the moving frame, w(k) = @'(k) — (V,)k,, to obtain the following dispersion relation:

wky ky) = ky (V) exp(—2hk)(1 — 2hk). 5)

The dispersion relation we find is purely real, which indicates that, in accordance with the
experiments, density waves freely propagate in the homogeneous suspension. Additionally, the
velocity and direction of propagation of these fluctuations is dependent on their wavelength, i.e.,
they are dispersive.
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FIG. 3. (a) Experiment: Formation of the shock front with 2 = 125.7 rad/s; images are 400 ms apart. (b)
Solid line: Normalized experimental intensity measurements for the images in (a). Each curve represents the
mean intensity, with the mean taken in the ¥ direction. Dashed line: Nonlocal hydrodynamic model (6). Dotted
line: Local model (7). The curves are vertically displaced from each other for clarity. (c) Three-dimensional
particle simulation with € = 62.8 rad/s; images are 640 ms apart. (d) Solid line: Density p(x,t) from the
simulations averaged over four realizations. Dashed line: Nonlocal hydrodynamic model (6).

The mean suspension velocity obtained from the continuum model (V,) = pO”TS overestimates
the one measured in the experiments by a factor of around 4-5. This is due to the fact that finite
particle size effects and the suspension microstructure are not accounted for by the model. Therefore,
to compare the speed of the density waves with the mean suspension velocity between theory and
experiment, we normalize w by (V). The calculated dispersion curve (5) is shown in Fig. 2(c) and
is in good qualitative agreement with the experimental dispersion curve shown in Fig. 2(b).

Figure 2(d) compares these two results for k, = 0, ¢p = 0.07-0.29, where ¢g = wa’pg is the
area fraction, and driving frequencies 2 = 32.4-125.7 rad/s. Due to the linear scaling of @ with
(Vy), the experimental data sets can be collapsed with the rescaling wh/(V,). The data collapse
well at longer wavelengths (above A, > 10k). Below this value, the spread in the data is larger. We
believe this is due to the fact that near-field interactions such as contact forces become dominant
and break the linear scaling at smaller wavelengths. The theoretical curve [Eq. (5)] is in excellent
agreement with the experimental results in the collapsed region and differs for smaller wavelengths.
We argue that this departure is to be expected, since the continuum model neglects the near-field
steric and hydrodynamic interactions which become dominant at small length scales. We note that
the dispersion relation is set only by 4 and does not depend on the particle size at large A, (A, >
10h). These results demonstrate that far-field hydrodynamic interactions drive traveling density
waves in this system. Since the density fluctuations in a homogeneous suspension of microrollers
are propagative, a suspension that is initially uniform will remain (on average) homogeneously
distributed, at least within a linearized model. While the fully nonlinear model is not easily tractable
theoretically, long-time numerical simulations and experiments have not indicated any apparent
nonlinear growth of the fluctuations.

When sharp density gradients are introduced in the suspension, the response of the system is no
longer purely propagative; the strong density gradient evolves into a traveling band [see Fig. 3(a)]. In
a second set of experiments, instead of a uniform distribution, we initially localize the particles in a
narrow strip on one side of the chamber. After the rotating field is turned on, the particle distribution
changes dramatically, organizing into a shock front, as shown in Fig. 3(a) and movie 2 in the SM
[27]. Shocklike structures have been observed in other driven suspension systems [7,12,16,17], where
density shock waves are formed due to local [16,17] or nonlocal [7,12] hydrodynamic interactions.
However, in all of these cases, the shock evolves into a Burgers-like shape; the shock front continually
steepens and a sharp discontinuity in density is observed. Here, we observe something quite different:
The shock in this microroller system evolves to have a finite width. The curves in Fig. 3(b) represent
the intensity measured in the propagating X direction, where we have averaged over the transverse
direction (¥). Our measurements show that the shock front in this system exhibits a well-defined
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FIG. 4. Front width selection due to nonlocal hydrodynamic interactions. (a) Wy = 5h. (b) Wy = 10A. (c)
Wy = 20h. Top: Normalized density distribution. The color code from light orange to black represent increasing
times. The blue circles delimit the front according to the criteria defined in the text. Bottom: Normalized front
width vs normalized time. The colored disks represent the times at which p(x,t) is shown in the top panel.
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bumplike shape with a finite width. To understand the origin of this finite-width shock, we turn again
to a continuum model, representing the microroller suspension as a continuum sheet of rotlets.

For short times, we can assume the rotlet density to be uniform along the y direction [see
Fig. 3(a)]. Thus, after integrating Eq. (3) over the y direction, we obtain the one-dimensional
nonlocal conservation equation

dp _ Ap(K *p)]

=— 6
ot 0x ©)

where

o0 Kl = x'oys ydy = 3 [(x — x4 4R2PR

We note that, in the long-wavelength limit, our nonlocal model [Eq. (6)] can be approximated by
the local inviscid Burgers’ equation

o /+°° 4Sh  (x — x)?

dp(x,r) 7S dp(x,1)?
ar 3 ax

We solved Egs. (6) and (7) numerically with a standard finite volume solver. The initial conditions
are taken from the normalized experimental intensity profiles. When the shock forms, the particle
height distribution P(h) is strongly modified from the equilibrium distribution. As a result, the
average particle height & is greater than the gravitational height [30]. Since P(h) is difficult to
measure experimentally, we use an estimate for 4 in our model. Figure 3(b) compares the numerical
solutions of the local (7) and nonlocal (6) equations with the experimental profiles. As seen in
that figure, the nonlocal model accurately captures both the shape and the dynamics of the shock,
although the magnitude of the bump is smaller in the experiments. This is due to our measurements
underestimating density when microrollers pile on top of each other. In the model, 4 is chosen so
that the final front width matches the experimental one, 2 = 2 um. This is consistent with the value
we measure in particle-based 3D numerical simulations, as shown below.

Qualitatively different dynamics occur if the initial profile we measure is instead evolved
according to a local Burgers’ equation. As shown in Fig. 3(b), the contrast between the nonlocal (6)
and local (7) model is stark: The local model does not capture the shape nor the evolution of the
front [16,17].

To check the predictions of our nonlocal model quantitatively, we perform a direct comparison
with particle-based Brownian dynamics 3D numerical simulations of the experimental system [so
that the density p and height P(h) distributions are known exactly]. Our simulation tool, described
in Ref. [30], includes hydrodynamic interactions between the particles and between the particles and
the floor, Brownian motion, and steric interactions. Each simulation contains N = 32 768 particles
which are initialized by sampling the equilibrium Gibbs-Boltzmann distribution using a Monte Carlo
method. Each particle is subject to an external constant torque 7y = 87 na><Q, where Q = 62.8 rad/s.
Figure 3(c) shows the time evolution of a portion of the suspension for + = 0-2.56 s. As in the
experimental case, the initially homogeneous strip evolves into a shock region with a well-defined
width. Figure 3(d) compares p(x,?) from the particle simulations averaged over four realizations
with the continuum model with no adjustable parameters. The height in the continuum model,
h =2.62 um, is taken from the averaged particle height measured in the 3D simulations between
t = 0sand¢ = 2.56s. The results show that the continuum model is in quantitative agreement with
the 3D simulations, thus confirming that the flow field in the x-y plane at the average particle height
plays a major role in the formation of shocks in these microroller suspensions. Overall, these results
demonstrate that the width of the shock front is intrinsically selected by the nonlocal nature of the
hydrodynamic interactions, and is set solely by the average height from the wall % (see the Appendix
for additional results on front width selection).

Theoretical studies using the types of rotlet models proposed here can also qualitatively explain
the hydrodynamic fingering instability observed after the formation of the shock, as we will present

(7
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in future publications. In future work we will also explore with more detailed computational models
the dependence of the mean velocity for a uniform suspension, which is not well predicted by the
simple theory presented here.

We expect similarly rich behavior dominated by hydrodynamic interactions with the floor and
among particles in other systems where external boundaries play a large role in determining the
flow field. Our model, simulations, and experiments can readily be extended to other systems, for
example, the sedimentation of particles adjacent to a wall. Although much work has been done
to understand the dynamics and local structure of freely sedimenting particles [31], much less is
understood about how nearby boundaries modify this system.

This work was supported primarily by the Gordon and Betty Moore Foundation through Grant
No. GBMF3849 and the Materials Research Science and Engineering Center (MRSEC) program of
the National Science Foundation under Award No. DMR-1420073. P.C. was partially supported by
the Center for Bio-Inspired Energy Science, a DOE BES EFRC under Award No. DE-SC0000989.
A.D. and B.D. were supported in part by the National Science Foundation under Award No. DMS-
1418706. We gratefully acknowledge the support of NVIDIA Corporation with the donation of GPU
hardware for performing some of the simulations reported here.

APPENDIX: FRONT WIDTH SELECTION

To understand how the width of the shock front is selected, we numerically investigated the
evolution of the nonlocal continuum model [Eq. (6) in the main text] at long times. We simulate
three different strips with initial widths Wy = 5k,10/k,20h. A fixed quantity of rotlets M is initially
uniformly distributed along the front, py = Wy/M. We monitor the front width W(¢) over time.
W(z) is defined as the distance between the fore part where p(x,t) < €y = 0.025p9 and the aft
where dp(x,t)/dx = €,, where €, = 1072 um—2. Figure 4 shows the time evolution of the density
p(x,t) and the front width W (¢) for Wy = 5h,10h,20h. In this figure, time is normalized by the mean
initial velocity of the front Vy = 1/M fOW" K (x)dx,where K (x) is defined in Eq. (8) in the main text.

We observe that, independently of the initial width Wy, W (¢) quickly converges to a fixed value
W* ~ 10h. The initially narrow strip W, < W* spreads, while the wide one W, > W* sheds particles
and quickly divides to reach W*; the system always evolves towards a shock front with a width
~10h, regardless of the initial particle distribution.
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