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Abstract

Predictive constitutive equations that connect easy-to-measure transport properties (e.g., viscosity and conductivity) with system performance
variables (e.g., power consumption and efficiency) are needed to design advanced thermal and electrical systems. In this work, we explore the
use of fluorescent particle-streak analysis to directly measure the local velocity field of a pressure-driven flow, introducing a new Python
package (FSVPy) to perform the analysis. Fluorescent streak velocimetry combines high-speed imaging with highly fluorescent particles to
produce images that contain fluorescent streaks, whose length and intensity can be related to the local flow velocity. By capturing images
throughout the sample volume, the three-dimensional velocity field can be quantified and reconstructed. We demonstrate this technique by
characterizing the channel flow profiles of several non-Newtonian fluids: micellar Cetylpyridinium Chloride solution, Carbopol 940, and
Polyethylene Glycol. We then explore more complex flows, where significant acceleration is created due to microscale features encountered
within the flow. We demonstrate the ability of FSVPy to process streaks of various shapes and use the variable intensity along the streak
to extract position-specific velocity measurements from individual images. Thus, we demonstrate that FSVPy is a flexible tool that can
be used to extract local velocimetry measurements from a wide variety of fluids and flow conditions. © 2022 The Society of Rheology.
https://doi.org/10.1122/8.0000521

I. INTRODUCTION

Quantifying the flow of complex fluids is critical to pre-
dicting their behavior in many technologies. Flow behavior
is complicated by the presence of multiple phases, complex
geometries, and non-Newtonian rheology, which leads to
a wide variety of flow instabilities such as vorticity
banding, shear banding, particle segregation, and slip. In
these cases, the flow-velocity field must be directly visual-
ized or computationally determined using simulations.
Spatially resolved flow velocity visualization is a powerful
tool to directly interrogate the flow behavior. Flow visuali-
zation techniques include direct methods, which require
tracer particles in the fluid, such as particle tracking veloc-
imetry (PTV) [1–6], particle image velocimetry (PIV)
[7–9], and streak velocimetry [10], and indirect/noninvasive
techniques such as laser Doppler anemometry [11], nuclear
magnetic resonance (NMR) [12], and Doppler ultrasound
methods [13].

Direct techniques including PTV and PIV have been
extensively used to study the flow of complex fluids includ-
ing rheometric flows [14]. In PTV experiments, the location
of the particles is tracked between sequences of images and
velocity is determined by the linear displacement of a particle
using the known frame rate. In contrast, PIV determines

displacement not by tracking individual particles, but by
tracking the displacement of collections of particles between
adjacent frames. The local velocity is then calculated by the
displacement of that collection using the known frame rate.
Both techniques have limitations that arise due to the require-
ment of tracking displacements between adjacent frames. For
PTV, this limitation manifests at high tracer particle densities
[15], where the identity of the tracer particle can be lost in
subsequent frames. While PIV performs better at high parti-
cle densities, it has a lower spatial resolution than PTV due
to tracking collections of particles and produces bias errors in
flows exhibiting large shear gradients where the configura-
tion of particles within a collection can be significantly
altered between adjacent frames [16].

While streak velocimetry is a direct method similar to
PTV and PIV, a key difference is an increase in exposure
time such that the trajectory of the particle is recorded on the
image plane. In this way, the streak features including its
length, shape, and changes in brightness can be directly
related to the local flow field experienced by the tracer parti-
cle in a single frame [17–22]. While historically particle
streak velocimetry [10] has utilized scattered light for streak
detection, recent examples have exploited phosphorescent
particles to generate steaks. Fond et al. demonstrated that
excitation of phosphorescent tracer particles could produce
streaks whose length and decaying brightness encoded both
the local flow velocity and the phosphorescent decay of the
dye [23]. Recently, fluorescent tracer particles have been
used to improve the resolution of PIV measurements
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[24–29]. For example, Petrosky et al. found that using fluores-
cent tracer particles reduced the laser flare near the wall of a
flow channel enabling PIV in microchannels [29]. These find-
ings suggest that fluorescent tracers have the potential to be
utilized in streak applications; however, no systematic study
has emerged that demonstrates the extraction of velocimetry
information from fluorescent streaks in complex flow fields.

Here, we describe a general framework to perform fluores-
cent streak velocimetry (FSV), which we define as the extrac-
tion of velocimetry data from streaks imaged in a single frame
generated by the motion of fluorescent tracers in a flow field.
This framework is integrated into a Python package (FSVPy)1

that uses existing feature-finding algorithms in scikit [30] to
identify the orientation and location of streaks within an
image. The velocimetry data within the streak are then ana-
lyzed using two frameworks that we validate in this work. The
first is used for unidirectional flow where the streak intensity
is fit to extract the streak width, which is proportional to the
velocity of the tracer particle at that location. The second
method is more general and determines the tracer velocity
from the variation of fluorescent intensity along the streak
contour, which we show is inversely proportional to the veloc-
ity of the tracer particle at that position. Both of these tech-
niques return the quantitative local velocity of streaks detected
within a single image frame. By acquiring many images over
the entire flow volume, we show that the accumulated statistics
on thousands of streaks can be analyzed to reconstruct the
flow velocity field with micrometer-scale resolution in micro-
fluidic and millifluidic flow channels with both Newtonian
and non-Newtonian fluids.

II. MATERIALS AND METHODS

A. Fluorescent particle synthesis

In this work, all the chemicals were used as received
without further purification. Rhodamine B, (3-mercaptopropyl)
trimethoxysilane (MPTPS), and ammonium hydroxide solution
were all purchased from Sigma-Aldrich (MO, USA),
Hydrogen peroxide 30 wt. % was purchased from Fisher (MA,
USA). Rhodamine-B doped silica particles were prepared
based on Xin’s method [31]. Briefly, 0.001 g of Rhodamine B,
0.98 g of MPTPS, and 10ml of water were vigorously stirred
in a round-bottom flask for 5 h in the dark. Upon addition of
the reagents, a turbid solution formed, as MPTPS is insoluble
in water. The condensation reaction of the MPTPS drives the
formation of silanol, which results in a slow transition to a
transparent mixture during the reaction. At this stage, 0.5 ml of
ammonium hydroxide (1 wt. % aqueous solution) was rapidly
dropped into the flask to trigger the condensation reactions of
silanol, and the whole mixture was allowed to stand still for
another 4 h. After reaction completion, a pink sediment formed
that settled to the bottom of the container. The sediment was
dispersed in 3.4 g of hydrogen peroxide and 3.4 g of ethanol
and stirred for 2 h at room temperature. The final products were
centrifuged and washed by de-ionized (DI) water five times to

remove the leftover dye and unreacted silane. Finally, all the
solid sediments were collected and redispersed in water for
storage. The morphology and size of the synthesized tracer par-
ticles was characterized by a scanning electron microscope
(SEM, JEOL JSM-7900FLV) after sputter coating with Au/Pt
(EPIC SPF Desk IV). The FT-IR spectrum was characterized
by a Nexus 870 spectrometer. Elemental composition was ana-
lyzed by x-ray photoelectron spectroscopy (XPS, Thermo
Scientific ESCALAB 250Xi). The size of the oxidized parti-
cles was found to be 1:22+ 0:16 μm by manually measuring
240 particles, as shown in Fig. S1 [32]. To confirm that oxida-
tion was successful, we compared both XPS and FTIR results
of the particles before and after oxidization, as shown in
Fig. S2 [32].

B. Materials

For the glycerol data presented, pure glycerol from Fischer
Scientific was diluted to an 85wt. % solution with milli-Q
water. This is known to exhibit Newtonian behavior. We also
tested a 12 wt. % solution of cetylpyridinium chloride, sodium
salicylate, and 0.5M NaCl which we abbreviate as CPCl-Sal.
At room temperature, this solution is known to form wormlike
micelles that show strong shear-thinning and shear banding
[4,33–35]. The rheology of this solution shows strong shear
thinning and a power-law index close to !1, consistent with
the presence of wormlike micelles. For the Carbopol data,
Carbopol 940 from Sigma-Aldrich was dissolved in milli-Q
water at a concentration of 0.1 wt. % and neutralized to a pH
of 7 with a 1M NaOH solution. This fluid is known to exhibit
yield-stress behavior with minimal thixotropy. The 8 wt. %
polyethylene glycol (PEG, 600 kDa, Sigma) solution was pre-
pared by directly mixing with DI water. To dissolve all the
PEG powder, the mixture was sonicated for 12 h at room tem-
perature. The prepared PEG solution was degassed in a
vacuum oven before rheological measurement.

C. Rheological characterization

Steady state flow curves for each material in Sec. II B
were measured using a stress-controlled rheometer (DHR-2,
TA Instruments) with a cone-plate geometry (40 mm diame-
ter and 1" cone angle) and a Peltier system at 25 "C and can
be found in supplementary material, Fig. S3b [32]. See
Fig. S3 of supplementary material [32] for steady-shear
curves. Solutions at varying concentrations of PEG, CPCl,
and Carbopol were tested. The measurements were acquired
using a flow sweep with shear rates logarithmically spaced
from 0.1 to 1000 1/s. The measurement time at each shear
rate was 60 s, which was found to be sufficient to ensure that
the stress reached a steady state. For the samples containing
PEG, we fit the resultant flow curves to the Carreau model,
η ¼ η1 þ η0(1þ a _γ)!n.

D. Fabrication of the microchannel

KMPR 1010 (MicroChem, MA, USA) was spin coated at
3000 RPM for 30 s to form a ∼10 μm-thick layer of negative
photoresist on a silicon wafer (4-inch diameter; 2 mm thick).
The wafer was then soft baked on a hot plate for 5 mins,1https://github.com/mmdriscoll/FSVPy
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exposed to a laser maskless aligner (Heidelberg MLA150)
witha 375 nm diode laser beam at 3700 mJ/cm2 for 30 min,
hard baked for 5 mins, and then developed in AZ917MIF for
5 mins to create photoresist patterns to define the microflui-
dic structures. Next, trenches of depth of ∼100 μm in the
exposed regions of the silicon wafer were created using deep
reactive-ion etching (DRIE) (STS Pegasus ICP-DRIE; SPTS
Technologies Ltd.). Finally, the depth of the micro-channels
was confirmed using profilometer (Dektak 8). The last step
in the DRIE process formed a thin film of polytetrafluoro-
ethylene (PTFE) to facilitate release of cured
Polydimethylsiloxane (PDMS) molds via processes of soft
lithography. Then, the micro-channels are fabricated on the
silicon wafer mask. To be specific, Dimethyl Siloxane
(DMS, Sylgard 184) and its curing agent are mixed at
volume ratio of 10:1. The pre-polymer mixture is degassed in
the vacuum oven for 20 mins to remove bubbles. The prepol-
ymer then is poured on the wafer mask carefully and cured at
50 °C in oven for 30 mins. The formed PDMS could be
peeled off easily from the wafer mask. The PDMS polymer
and glass substrates are applied the oxygen plasma treatment
(SAMCO PC-300) for 60 s and following heat treatment at
90 °C in oven for 20 mins to introduce strong bonding
between the PDMS and the glass substrates.

E. Imaging

For the data shown in Figs. 3 and 4, the fluorescent col-
loids were dispersed in water at a concentration of

approximately 200 ppm. Flow was induced via a 1 cm diam-
eter glass syringe placed in a syringe pump, flowing
through a 1 % 1 mm2 capillary that was placed on an
Olympus IX83 inverted fluorescent microscope. Images
were captured using a Hamamatsu ORCA-flash 4.0 camera,
with a 20X objective and a doubler to achieve 40X magnifi-
cation. The sample was illuminated with LED-generated
555 nm wavelength light for an exposure time of 50 ms.
Images were taken at intervals of 20 μm in microscope
objective height, with a correction to true channel depth
applied during data processing in order to account for vari-
able indices of refraction in the different liquids. Images
were acquired at a frame rate of 2.3 fps. For the data shown
in Figs. 5–7, the colloids were dispersed in water at approxi-
mately 50 ppm and flowed through PDMS channels, cap-
tured at frame rates from 4 to 10 fps with exposure times
varying from 50 to 200 ms. All other methodology (pump,
microscope, camera, illumination) was unchanged.

F. Finite element simulations

Three-dimensional flow fields were simulated using
OPENFOAM.2 The channel was constructed using the dimen-
sions of the channel and a mesh containing 1600 nodes per
cross section was constructed. SIMPLEFOAM, a steady-state,
incompressible fluid solver, was used with no-slip boundary

FIG. 1. Illustration of the process from raw image to streak detection. (a) An unprocessed image with multiple streaks. The inset depicts the schematic of the
unidirectional flow channel. (b) The processed image after streak identification and filtering, qualified streaks are boxed with number. (c) Enlargements of indi-
vidual streaks that were boxed in (b). (d)–(f ) Illustration of the same procedure for a complex flow that produces curved streaks.

2http://www.openfoam.org
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conditions at all channel walls and a constant volumetric
flow rate at the channel inlet. A zero-gradient boundary con-
dition was applied to the channel outlet. Fully developed
flow was observed within a few mm of the inlet and the
cross-sectional velocity profile was taken downstream of the
entrance region.

III. RESULTS AND DISCUSSION

FSV requires fluorescent tracers with robust fluorescence
and slow photobleaching. In order to guarantee this, we mod-
ified an existing technique [31] to produce hydrophilic
Rhodamine B doped silica particles that exhibit a robust and

long-lived fluorescent signal under the illumination condi-
tions reported in this work. The synthesis and characteriza-
tions of tracer particles are summarized in the supplementary
material [32]. To generate streaks, we illuminate a region of
the channel with 555 nm light and increase the exposure time
of the image acquisition until streaks are observed in the
image plane. Figure 1 illustrates typical streaks observed in
unidirectional flow [Fig. 1(a)] and in a microfluidic chip with
pillars [Fig. 1(b)]. The raw images were bandpass filtered
and the streaks were identified using find_contours, a
contour detection algorithm in skimage that uses the march-
ing squares algorithm to distinguish pixels as part of a
feature [36]. The corresponding filtered images and identified

FIG. 2. (a) An image of an individual streak after correcting for angle alignment. The red and blue dots are intensity along the x and y axes, respectively.
(b) Histogram of the height of all detected streaks (red/light grey) and the height of streaks used for data analysis (blue/medium grey). (c) Histogram of the
tilted angle of all detected streaks (blue/medium grey) and the tilted angle of streaks used for data analysis (green/dark grey).
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streaks are highlighted by their bounding boxes and num-
bered in Figs. 1(c) and 1(d), respectively. Each feature identi-
fied returns its bounding box, area, perimeter, angle, contour,
and centroid, which can then be used for subsequent analysis
as shown in Figs. 1(e) and 1(f ). This algorithm can robustly
identify streaks regardless of their shape.

A. Unidirectional flow: Fitting streak length to
quantify the velocity

In order to demonstrate quantitative velocity detection in
unidirectional flow, we acquire streak images of fluorescent
tracer particles suspended in an 85% glycerol solution in a
flow channel with a square cross section, 1 % 1 mm2, at a
constant flow rate (2 ml/h) controlled by a syringe pump. We
image the flow channel with a 50 ms exposure time. The
streaks detected as described above are rotated based on the
value of the contour angle α, which is returned from the
feature detection. After rotation, the orientation of the streak
aligns with the direction of the flow as shown in Fig. 2(a). In
unidirectional flow, we define the x-direction as the flow
direction, the y-direction as perpendicular to the flow direc-
tion within the imaging plane, and the z-direction as normal
to the imaging plane. We then averaged the fluorescent
signal along the y- and x-directions from the centers of the
bounding box with a 5-pixel bin as indicated by the red and
blue boxes (dashed pairs of vertical and horizontal lines) in
Fig. 2(a). The mean fluorescent intensity Ix0(y) was fit to a
Gaussian,

Ix0(y) ¼ bþ Ae!(y!y0)2=2h2 , (1)

to determine the streak width, where A is the amplitude, b is
the offset, y0 is the pixel position of the streak center, and h

is the streak height. For the streak shown in Fig. 2(a), the
height was found h ¼ 6:3 pixels. Since the pixel width at
this magnification is 0.1625 μm, the height of streak is
1:02 μm after calculation, which is consistent with the size of
the particles determined by SEM. The mean fluorescent
intensity along the y-direction Iy0(x) was fit to a Gaussian
function convoluted with a step function to determine the
streak length L,

Iy0(x)¼ aþ bxþ (1!mx) erf
x! x0

s

! "
! erf

x! x0 ! L
s

# $% &
,

(2)

where L is the streak length, s is the width of distribution, m is
a slope of the intensity function, b and A defined as before.

This fitting procedure is repeated for each feature detected
within a series of images acquired while scanning the entire
channel cross section along the y- and z-directions. All fea-
tures were analyzed as above and the results for the streak
heights and widths are associated with the properties deter-
mined from the find_contours function as a dataframe.
Within this population, we observe some anomalies including
overlapping streaks, bubbles, and image artifacts. These can
be removed from the population by filtering the total feature
population based on the streak properties. We found that the
streak height and angle provided the most effective filtering
criteria, as the height of the streak should be narrowly distrib-
uted to reflect the distribution of particle size and the angle
of the streak should be narrowly distributed to reflect the uni-
directional nature of the flow. For the streak height, we fit the
heights to a sum of three Gaussian functions and retained
streaks that fell within 1 standard deviation of the most prom-
inent peak height [Fig. 2(b)]. We found that the mean of this

FIG. 3. (a) The measured velocity map of the 85% glycerol and (b) the corresponding simulation velocity map of typical Newtonian fluid of this looking
down channel. The unit of the colorbar is mm=s. (c) Velocity curve of 85% glycerol at 2 ml/h along the z-direction in the center of the channel. The red (grey)
lines are histograms of the observed velocity distribution at each z-direction.
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filtered population agreed well with the particle radii. This
filter eliminates streaks that are formed by overlapping two
or more streaks and streaks that are out of focus. For the
filter applied to the streak angle, a single Gaussian was fit to
the observed distribution and we retained streaks that fell
within 5 sigma of the most probably streak angle as shown in
Fig. 2(c). This works because all of the streaks should
project along the flow direction, as our flow is unidirectional.
The result of these two filters reduces the starting population
of 4492 streaks to 2625 streaks and efficiently removes most
anomalies.

Using this filtered population of streaks, we can recon-
struct the velocity profile within the channel cross section by
averaging the velocity at each y-position and z-position as
shown in Fig. 3(a), where the color corresponds to the mea-
sured velocity. The ability to determine a meaningful average
of velocity depends on the choice of spatial resolution, the
total number of frames acquired, and the number of streaks
detected within each frame. We provide a simple geometric
argument in the supplementary material [32] that estimates
the number of streaks per image for a given spatial resolu-
tion, local velocity, and exposure time. To verify our results,
we simulate the fluid flow using OPENFOAM.1 The two-
dimensional cross section of the velocity is shown at the
same position down the flow channel in Fig. 3(b). The color
of the velocity at each mesh point is on the same scale as that
of our measurements, demonstrating good quantitative agree-
ment between the measurements and the simulations.
Figure 3(c) shows a slice of the two-dimensional velocity
profile along the z-direction, and additional slices represent
the distribution of the velocities observed at each z-position.
Note that many images were acquired at each position within
the channel (30 per z-position for the data shown) such that
many streaks are included in the reported averaged quantities
(approximately 100 per z-position on average for the data
shown). The most probable velocity along the x-direction is
given as the solid points in Fig. 3(c), the red (grey) lines are
histograms of the observed velocity distribution at each z-
position, and the solid black line is a slice of the velocities
determined from the OPENFOAM simulation. There is

quantitative agreement between the experimental and simu-
lated velocity curves with the only adjustable parameter
being the z-offset of the bottom wall. This demonstrates that
FSV can be utilized to accurately quantify the velocity flow
field of fluorescent tracer particles.

To demonstrate the wider applicability of FSV method
and its ability to measure local flow velocity for complex
fluids, we examine the CPCl solution. We acquired a series
of images along the z-direction using 20 μm steps and aver-
aged the identified and filtered streaks using the previously
defined framework in Fig. 3. The resulting velocity profiles
are shown in Fig. 4(a) for three different flow rates. The
strong non-Newtonian character of these fluids is reflected in
the pluglike flow at all flow rates. From the velocity profiles,
We calculated the mean velocity for the 1, 2, and 4 ml/h
cases and found them to be 0.29, 0.57, and 0.98 mm/s,
respectively, which is comparable to the theoretical values of
0.27, 0.53, and 1.06 mm/s expected for pluglike flow. At
2 ml/h pumping rate, we also compare the profile of the
CPCl-Sal sample to a glycerol solution, an 8 wt. % PEG sol-
ution, and a 0.1 wt. % Carbopol solution—a yield stress
fluid. The resulting flow profiles are shown in Fig. 4(b).
Again, we observe complex flow behavior for all the samples
with quantitative differences arising due to their different rhe-
ology. The viscosity-shear rate curves of each material are
summarized in Fig. S3 [32]. The maximum velocities are
plotted against power-law index in Fig. 4(c), showing the
expected relation of decreasing maximum velocity with
increased shear-thinning.

B. Curvystreaks: An algorithm for identifying
generic streaks

The algorithm described in part A is computationally effi-
cient and works well to identify rectangular streaks.
However, requiring the streaks to be rectangular limits our
method to being used to measure flows which are unidirec-
tional. To overcome this challenge, we created an additional
computation package, curvystreaks, which uses a different
and more flexible algorithm to identify the streak centerline.

FIG. 4. (a) Velocity of 12 wt. % CPCl-Sal measured along the z-direction at a flow rate of 1, 2, and 4 ml/h. (b) Velocity of 12 wt. % CPCl-Sal, 0.1 wt. %
Carbopol, 85% glycerol, and 8 wt. % PEG measured along the z-direction at a flow rate of 2 ml/h. (c) The maximum velocities observed in (b) as a function of
the power-law index, which shows the strength of shear-thinning.
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While we have sacrificed computational efficiency, curvy-
streaks substantially increases the flexibility of the FSV
method. To demonstrate this algorithm, we created a syn-
thetic dataset created from a hand-drawn bezier curve; the
identified centerline of this curve is shown in Fig. 5(a).

In order to quantify velocimetry from these more compli-
cated streaks, we utilize skeletonization, a well-known image-
processing algorithm for identifying the medial axis of a
binarized image. The first step is to binarize our image, using
the polygon contour determined from the find_contour func-
tion as a mask for binarization. Next, we apply skimage’s
medial_axis function to this mask to return the medial axis of
our streak (the medial axis is a good approximation to the cen-
terline); this is the centerline curve which is plotted in
Fig. 5(a). While medial_axis robustly returns the centerline of

our streak, the points are not returned in their order along the
centerline, but are ordered by their y-coordinate. As we would
like to measure the velocity along the streak to probe gradients
in the flow velocity, this issue is severe. Figure 5(b) illustrates
this problem: the centerline points are colored according to
their order. As seen in that figure, the points as-returned are
not ordered along the centerline. To resolve this issue, we
developed a sorting algorithm which takes as an input the
medial axis points as found via skeletonization and returns an
ordered list of points. We note that solving this problem is
equivalent to solving the traveling salesman problem. In other
words, we need to identify the shortest path among a set of
points for which we do not know the starting or ending point.

To sort the points, we borrow techniques from graph
theory. First, we create a graph and add every found point as

FIG. 5. (a) All points of the centerline identified by the algorithm. (b) The centerline points in (a) are colored according to their ordering. As found, the points
are returned in the order of the y-coordinate. (c) After the sorting algorithm is applied, the set of points is ordered by their distance along the centerline.

FIG. 6. (a) An image of two example streaks in flow through an array of regular posts, with the Python-detected contours overlaid; intensity as a function of
position along the streak for the example streaks; velocity as a function of position along the streak; velocity at each position on the streak, plotted on a snapshot
of the flow geometry taken in bright field. (b) The same progression for two streaks in an array of randomly sized and positioned posts.
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a node. We then use scipy’s implementation of KDTree to
create a distance tree. We query this tree for all pairs which
are 1.5 pixels apart; this identifies adjacent points. We then
use this distance tree to populate the edges of the graph.
Next, we need to identify the source and target nodes of the
graph, i.e., the starting and ending points. To do so, we gener-
ate a list of candidate source/target nodes by identifying the
nodes, which have a degree less than two (i.e., that only have
one neighbor). We must now (1) identify the correct source
and target node and (2) identify the shortest path which con-
nects them, as this will be a good approximation to the true
medial axis of our streak. To accomplish this, we measure by
brute force all shortest paths between all candidate source/
target nodes and then select the longest shortest path; this will
be the path that runs from the two end points of our streak
along the medial axis. Figure 5(c) shows the result of applying
our sorting algorithm to the unordered points shown in
Fig. 5(b). It is clear from the figure that the true order of the
points (along the streak) has been correctly identified.

An example of this algorithm applied to experimental
curved streaks and used to measure velocity is shown in
Fig. 6. Figure 6(a) shows the process applied to streaks gen-
erated from flow through a regular postarray, and Fig. 6(b)
shows the algorithm used on streaks generated by flow
through an array of posts with randomly chosen radii and
center position. The left panel shows the contours that are
identified by the code plotted on top of the raw image. Once
the streaks are identified and the points properly ordered (via
the method explained in Fig. 5), the intensity as a function of
position along each streak is plotted in the second panel, calcu-
lated using a rolling average of three points. The brightness at
any given point on the streak is inversely proportional to the
velocity of the particle as it traveled through that point: the
slower the particle was going, the longer time it resided at that
point, and the more light it emitted. The average velocity
along the streak is known from the total length of the contour
and the exposure time of the image ( just as with the rectangu-
lar streaks in part A), and the average intensity along the streak
is simple to compute once the data are in this form. From the

average velocity, vavg, average intensity, Iavg, and local inten-
sity, Il, it is then possible to compute the local velocity, vl,

vl ¼ vavg
Iavg
Il

# $
: (3)

The resulting velocity is plotted in the third panel as a func-
tion of position along the contour. Finally, the fourth panel
shows the velocity as a function of location in the flow,
plotted over a snapshot of the flow geometry that was taken
in bright-field illumination. Note that the velocity results
match physical intuition: streak 1 in the regular postarray is
moving faster than streak 0, which is far closer to a solid
boundary; the acceleration of streak 0 matches the pressure
gradient that is expected for impinging flow, with the particle
accelerating as it passes the obstacle and then decelerating as
it approaches the next obstacle. Also note that in the irregular
postarray, two streaks from the same region of the flow with
different local intensities correctly measure the same velocity,
which shows that this method is robust to variations in lumi-
nosity of individual tracer particles. For clarity of exposition,
the example images illustrate only two streaks undergoing
analysis, but each image in this data set averaged 6–8 usable
streaks per image. The number of streaks per frame (supple-
mentary material, Section B) [32] is dependent upon (1) the
seeding concentration of tracer particles, (2) the exposure
time of the image, and (3) the image size. Experiment dura-
tion was not a limiting factor in this data collection, but the
density of velocity information per image can be increased
for tests that cannot run for as long. Too high of a particle
density will result in streak overlap, and too long an exposure
time will result in too many streaks that touch the edge [the
entire streak must be visible in order to know the average
velocity in Eq. (3)], but both parameters can be pushed
beyond what is shown here. These plots illustrate the power
of the FSV technique: a single image allows one to simulta-
neously measure the velocity field at many varying locations
in the flow field.

FIG. 7. Velocity measurement of the flow in an expansion channel. (a) A drawing indicating the channel shape, with the dashed line indicating the camera
view, and the arrow indicating the flow direction. (b) Plot of measured velocities. The upper half shows all streaks detected from 3000 frames of video, the
lower half shows a random sampling of a few of the streaks plotted in the top half, mirrored across the dashed line. (c) The average velocity across all y values
as a function of position in x.
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To demonstrate the construction of a full flow field in a
velocimetric measurement, an expansion channel is shown in
Fig. 7. Figure 7(a) shows a schematic of the channel, and the
streaks collected from 3000 frames of video are co-plotted in
the upper half of Fig. 7(b) to show the full and detailed
velocity map. The lower half of Fig. 7(b) shows a randomly
selected sampling of the top half, mirrored across the dotted
line. Figure 7(c) shows a plot of velocity averaged over all y
as a function of x, using 50 pixel wide bins in x, with the
width of the channel co-plotted to show the relation. The
data show the expected pattern for incompressible steady
flow of linearly decreasing velocity with linearly increasing
channel cross section. The random sampling shown in the
lower half of Fig. 7(b) does show some small variation in
measured velocity of streaks near each other that are expected
to have the same velocity. The cause of this variation is parti-
cles that are slightly higher or lower in z, but still within the
imaging range. The effect is stronger in these data than in
Fig. 2–4 because the velocity gradient in z is larger (this
channel is 100 μm tall, whereas the channel for the rectangu-
lar streak experiments was 1mm tall), creating a larger range
of velocities present in the band in z where particles are in
focus. Sufficient averaging alleviates any issues caused by
this variation as demonstrated here, but using more sophisti-
cated image processing to measure z-position via streak char-
acteristics stands as a potential development that would
further enhance this technique.

IV. CONCLUSIONS

In summary, we have developed a robust and computa-
tionally efficient Python package for performing FSV. We
demonstrated the use of this code in a broad range of flow
scenarios, first attaining 3D velocity fields for both
Newtonian and non-Newtonian fluids in unidirectional flow,
then measuring more complex flow fields. The advantages of
FSV over other commonly used techniques such as PIV and
PTV are shorter run time and efficient encoding of informa-
tion. It matches the spatial resolution of PTV, while contain-
ing all the information necessary to measure velocity in each
single image, thus requiring no computationally expensive
cross correlation steps. FSVPy is robust to streaks of any
shape and does not have stringent image quality require-
ments. This technique can produce detailed, three-
dimensional velocimetric measurements in complex flows of
complex fluids.
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